

SagaChain Technical
Whitepaper

By: David Beberman, Michael Holdmann & Jay Moore

2

Index
Abstract .. 4
I. SagaChain Sharded Consensus Main Loop ... 6

Current State Blockchain Architectures .. 6
SagaChain Sharded Consensus Main Loop ... 6
Leader Operations ... 7

Block creation Stage 1 .. 7
Leader Gossip Stage 4 ... 7

Validator Operations ... 7
PoW Operations, stage 3 .. 8
Validator Gossip, stage 4 .. 8

II. Distributed Proof-of-Work ... 9
(D-PoW) for scalability .. 9

III. Extensible Blockchain Object Model (SagaOS) for parallelization ... 11
Individual Native Coin Transactions ... 11
Smart Contracts for Sharding ... 11
Smart Object Assets Help Enable Sharding .. 13

IV. Extensible Smart Object Assets .. 15
Overview .. 15
Examples of Assets ... 15

Asset Creation ... 15
Asset Object Reference .. 15

Fractionalization of Assets ... 16
Multitiered Fractionalization of Assets ... 18
Creation of Baskets of Assets ... 18
Example Use Case... 19
Business Shares As Assets ... 19
Brief Comparison of Extensible Smart Object Assets to Smart Contracts .. 20
Brief Comment on Sharding and Scalability with Extensible Smart Object Assets ... 20
Summary ... 20

V. The SagaCoin Financial Model for Incentivizing ... 21
Existing Cryptocurrency Supply Management .. 21
Volume of Token Exchange .. 22
Digital GDP .. 22

3

Digital GDP and Token Value with Fixed Token Supply ... 22
Digital GDP and Token Supply Management ... 22
Managing the SagaCoin Supply for Value Accumulation and Currency Usability .. 23
External GDP ... 24
Digital GDP .. 24
Some Assumptions for Digital GDP Enabled Smart Objects: .. 24
Decentralized SagaCoin Supply Management with Digital GDP Metrics .. 25
External Economies and “Oracles” .. 25

VI. Governance SagaOS Objects of Operational Smart Assets .. 26
Overview .. 26
Governance Capabilities in Abstract ... 26
Governance Diagrams ... 27
Governance Voting .. 28
Governance Voting Management ... 29
Governance Asset Management ... 29
Registry Committee Members Asset .. 29
Operational Smart Asset API Lock .. 29
Summary ... 29

VII. Governance & Financial Models ... 30
Governance ... 30
Financial Models .. 30
Monetary Policy and Treasury Models ... 31
Monetary Policy Model ... 32
Equation of Exchange ... 32
Gas Price Model ... 33
Node Staking Model .. 33
PraSaga Foundation ... 33

VIII. Conclusion: .. 35

4

Abstract
PraSaga has created a new blockchain infrastructure, SagaChain which addresses three
fundamental issues:

• Scalability of the Consensus Algorithm
• Parallelization (i.e. Sharding) of the Smart Contract Architecture
• Cryptocurrency to Incentivize Node Validators (aka Miners) and that is used

for transactions rather than just a store of value

The SagaChain addresses these three aspects with the following:

• Distributed Proof-of-Work (D-POW) for scalability
• Extensible Blockchain Object Model (SagaOS) for parallelization
• The SagaCoin Financial Model for cryptocurrency

The SagaChain addresses scalability with algorithms that increase transaction throughput
directly proportional to increasing quantities of node validators (miners). That increase also
increases the amount of blockchain cybersecurity directly proportional to increasing quantities of
node validators (miners). This is accomplished through the use of parallelization of the
blockchain, known as sharding, and through the use of the proof-of-work algorithm applied in
an approach that distributes across the blockchain shards.

The SagaOS uses a "first-class object model" concept coupled with an adaption of the "system
object model" concept to create a blockchain object-oriented user account model. Each user
account contains a directed graph of objects, with each object maintaining its own state. An
account may have new objects added to its account, or may be transferred to other accounts,
or deleted, depending on the transactions executed and the class methods implemented for
each of the various objects. This is in direct contrast to the existing blockchain smart contract
model where user accounts only contain a balance of the native token of the specific
blockchain, and all state is stored in separate smart contracts, not in the user’s account.

The SagaOS users’ state account model enables deterministic parallel transactions between any
disjointed or unconnected set of user accounts.

As an example: Consider user accounts A, B, C, D. If accounts A and B have a transaction, and
accounts C and D have a transaction, because all object state is local to the accounts, these
two transactions can be executed in parallel. Therefore, these two transactions can be
executed on separate blockchain shards. By contrast, the existing blockchain smart contract
model depends on all transactions being serialized, i.e. one after the other, because the state of

5

the smart contract is stored in a single account. This means that both transactions must be
executed one after the other, even though the transactions are completely unrelated to each
other. This fundamental change in state management permits scaling with a sharded
blockchain, such as the D-POW consensus algorithm of the SagaChain.

The SagaCoin financial model addresses several aspects of limitations of the current
cryptocurrency models. The well-known Bitcoin model, and the Ethereum model, both can be
characterized as deflationary currency models that are non-responsive to variations in the
economic "climate". This has resulted in widely varying, but generally increasing pricing
against fiat currencies for these models. A deflationary currency model has the effect of
encouraging owners to hold the currency instead of spending it. Any time an owner spends their
Bitcoin,
they lose the future value of the Bitcoin. An extreme example of this is the $800,000,000 pizza.
An early Bitcoin enthusiast paid 10,000 bitcoins for a pizza. Less than 10 years later, those were
worth greater than $800,000,000.

In contrast to a deflationary currency model, an inflationary cryptocurrency model would be
created simply by mining ever increasing larger amounts of tokens. An inflationary currency
model would have the effect of encouraging the immediate expenditure of the token to some
other value, such as fiat currency. As a result, such a token might be used as a very short term
means of transfer of value between different currencies or as an immediate point-of-sale
purchase medium but would not be suited to holding for any length of time in a user account
on a blockchain. Although there may be high velocity of transactions, with this model, the
cryptocurrency would have little to no appreciation in value. This has a negative effect in
attracting miners to the blockchain. Without the miners, the security of the blockchain
collapses, and the cryptocurrency completely fails.

The SagaCoin addresses both the deflationary and inflationary aspects through a model that
supports managing the rate of new tokens being added in to circulation by the miners (called
mining) and the rate of tokens being taken out of circulation, (called burning). To avoid
centralized control of the financial model, and thus to provide credibility to the value of the
SagaCoin as a viable cryptocurrency, the management of the financial model uses a
decentralized democratic governance model (i.e. voting) to control the various parameters of the
model. The voting is conducted on the SagaChain itself, creating a self-managed, trustless
financial model that is responsive to the SagaChain's economy. As a result, the SagaCoin is
internally stable within the SagaChain which makes it suitable to be used as a currency.

The following sections describe the major components of the SagaChain technology: Main
Loop, Individual Shard Consensus; D-POW; SagaOS; XSOA; and SagaCoin Financial Model.
This is followed by a brief description of the PraSaga Foundation and concluding paragraphs.

6

I. SagaChain Sharded Consensus Main Loop

SagaChain is made up of multiple individual
blockchains or “shards”. The SagaChain main loop
executes on each individual parallel blockchain
independently. SagaChain uses a pat. pend. RAFT11

style protocol extended with byzantine fault tolerance
and additional features. The blockchain serves as the
ledger for the RAFT style protocol. Election of the
Primary Leader, the Secondary Leader and future
Leaders use the pat. pend. Verifiable Random
Function (VRF]22 which in addition to providing a
selection means for election, also minimizes
opportunities for collusion attacks.

Current State Blockchain
Architectures

Blockchain designs consisting of multiple individual
blockchains, or “shards”, enable scaling of aggregate
throughput of transactions by increasing the number
of shards. Each shard uses a blockchain protocol for
adding new blocks containing transactions to itself.
The state of the art blockchain protocols used for such
shards make use of variations of byzantine fault
tolerant (BFT) protocols commonly called proof-of-
stake (PoS). Such protocols depend on asymmetric
keys for signature authentication by validator nodes
on each shard independently. Although it has been
shown that such PoS protocols applied to blockchain
shards offer minimal computational effort, and thus
are an attractive to the much higher computational
effort of existing proof-of-work (PoW) protocols,
relying solely on PoS signature authentication has
significant drawbacks:

• If a supermajority of private keys of the

validators on a shard are compromised, a fake
alternative blockchain can be presented,
indistinguishable from the real blockchain.

1 DGB-Modified-BFT-RAFT.pdf
2 DGB-Verifiable-Random-Function-PPA.pdf

• The rate of block production cannot be
determined by inspection of the blockchain
itself. Whereas PoW provides a frequency
estimate with a given amount of hashpower.

As a result, the “longest chain” decision used by PoW
blockchains (i.e. Bitcoin) is not applicable.
What is needed is a blockchain sharding design that
incorporates both protocols, PoS and PoW to address
both the reduction of computational effort inherent in
PoS and the “longest chain” decision inherent in PoW.

Therefore, the following blockchain shard design
called the SagaChain Main Loop3 combines PoS and
PoW to complement the weaknesses in each protocol
with the strengths of the other. Additional features
of the design: enable the Verifiable Random Function
to be derived directly from its operation; and generate
PoW solutions for the SagaChain Distributed Proof-
of-Work protocol, which creates the long-term
immutability of the SagaChain and the solution to
forks caused by network partitioning.

SagaChain Sharded Consensus
Main Loop

Each SagaChain Shard has a current set of nodes
assigned to it. Assignment of nodes to SagaChain
Shards is described in “Means for Node Registration
and Random Selection using VRF”.
Each SagaChain Shard performs the same main loop
if/until the chain is terminated. It consists of four main
stages:

Block creation by the Leader.
Byzantine Fault Tolerant validation by the selected
validator nodes for the current block. (Using PoS
staking model).

3 DGB-Blockchain-Main-Loop-PPA.pdf

https://prasagaofficial.sharepoint.com/:b:/s/public/EcB2namZGCVDn971MSo7Z-QB4gRic3J_NQuMSxLscqfcqA?e=EfOjyP
https://prasagaofficial.sharepoint.com/:b:/s/public/EdnV9IGECVtCovUN3MJEGw0BQFfFEuoZBgD3Y45LLTzyrw?e=geQjmJ
https://prasagaofficial.sharepoint.com/:b:/s/public/Ea5nIw03GzhJks2hJAEgspoBzhiuUrDYVbrboYdfis273w?e=LrpQPj

7

Proof-of-Work solution by all nodes in the current set
of nodes assigned to the SagaChain Shard.
Block gossip (Using Distributed PoW)

Details for each step are described in the following
sections. The following is a brief overview.

Leader Operations

Block creation Stage 1

The Leader combines the following into each new
block:

• New transactions from its transaction queue
• Authenticated validation results of previous

block
• PoW Solution of the previous block
• VRF value from the PoW solution
• Leader management information

The Leader hashes and signs the block to authenticate
it, and multicasts it to the validator nodes that are
selected via the VRF. At this point, stage 1 is
completed. The Leader uses a local timer to detect
catastrophic failures.

Leader Gossip Stage 4

Upon receiving a Proof-of-Work solution for the
current block, with at least f+1 signatures:

∑ node signatures >= f + 1 and f >=
node count / 2

The Leader gossips the block and the PoW solution to all
nodes in the SagaChain. The Leader also unicasts to all
other SagaChain Leaders as a distribution
performance optimization. The Leader does not use
the SagaChain Modified BFT RAFT protocol for the
unicast to the other SagaChain Leaders. No assumption of
synchronization between SagaChain Shards exists within the
SagaChain mainloop34. A Leader receiving a validated
block from the Leader of another chain, broadcasts the
block to the nodes on its chain as a distribution
optimization.

Validator Operations

Byzantine Fault Tolerant Validation, stage 2
A node on receiving a new block from the Leader,
performs the following actions:

• Uses the VRF to verify it is a selected BFT

validator for this block
◦ if not, it forwards the block to the selected

nodes given the VRF
• If the validator does not have the previous

block or blocks
◦ requests the previous block or blocks from

the other selected BFT validators and the
Leader

◦ if none of these nodes responds with the
previous blocks needed, the validator
requests from other nodes on the
SagaChain Shard

• Validates the transactions in the block
• Creates a validation message with

◦ the transaction validation results (i.e.
votes)

◦ the hash of the block
◦ the validators signature of the hash
◦ a hash of the message and signature of

the hash
• The node multicasts its message to the other

selected validators
• The node sends the message to the Leader

A node on receiving a validation message from
another validator, performs the following actions:

• Authenticates the message
• Verifies the transaction validations agree with

its own results
• Authenticates any signatures
• Adds its signature of the hash to the message
• If the total signatures is less the 2f+1, and the

validator has not heard from all other
validators, broadcasts the message, to nodes
it hasn't heard from, where 3f+1 = node count.

8

• If the total signatures is greater than 2f+1,
and the validator has not heard from all other
validators with 2f+1 signatures, sends the
message to the Leader, and broadcasts to
nodes it hasn't heard from.

• If the total signatures is greater than 2f+1,
and the validator has heard from all other
validators, does not broadcast the message.

• If the total signatures is greater than or equal
to 2f+1, validator transitions to the PoW
Solution stage, stage 3.

PoW Operations, stage 3

A node, on receiving a validation message with 2f+1
signatures, performs the following actions, in 2
rounds:

• Authenticates the message
• Authenticates the signatures
• Begins solving the PoW in round 1
• If solved the PoW and no other PoW solution

was received in the interim:

◦ do round signature authenticating PoW,
send to signature and PoW to Leader, and
broadcast.

• If node receives PoW solution from another
node:
◦ Verifies PoW solution and signatures, and

stops any local PoW Solution work,
otherwise ignores and continues PoW
solution work

◦ If signature count is less than 50%+1 of
nodes, adds signature, sends to nodes that
have not signed yet.

◦ If signature count is greater than or equal
to 50%+1 of nodes, begins round 2:
▪ checks the second round of signature

counts.
• If count is less than f, where 3f+1 =

node count:

◦ adds its signature to the second
round, and sends a copy to the
Leader

◦ multicasts to nodes that have
not signed the second round

• If second stage count is >= f:

◦ adds its signature to the second
round

◦ forwards copy to the Leader

Validator Gossip, stage 4

A node on completing stage 3, rounds 1 and 2
performs the following:

• Updates its state information using

transactions in block B-1, that are verified in
block B.

• Gossips block B and PoW solution
referencing B

Leader does not have to participate as a validator

Each new block contains the transaction validation
results of the previous block, and new transactions to
be validated. A transaction in block B is validated in
block B + 1. This enables the validation stage to be
performed by the selected validator nodes, separate
from the Leader. The Leader's responsibility is to
create the blocks of transactions at the top of each
cycle of the main loop, after the Leader has completed
the gossip stage 4. A block is not considered complete
until the transactions and the PoW solution have been
gossiped.

If the Leader in stage 1 proposes a block B that
references a PoW solution other than the that of block
B–1 previously gossiped, any node receiving such a
block requests a Leader change to a new Leader using
the VRF from block B-2, and includes as proof of the
Leader's error the PoW solution with the majority of
signatures.

Block numbering, and transactions at chain
termination

Blocks are numbered monotonically increasing. For
each block number B, there is an associated
transaction block and a PoW solution. On completion
of the PoW solution, they are gossiped together. A

9

transaction block contains the verification of the
transactions in block B-1 and new transactions.
Therefore, a SagaChain blockchain that terminates
normally shall have no new transactions in its terminal
block Bt.

A SagaChain blockchain that terminates
abnormally may have new transactions in its latest
block, Bl, none of which shall be considered
processed, and may be resubmitted.

II. Distributed Proof-of-Work

(D-PoW) for scalability

A computer-based method for combining individual
hashpower of a plethora of shards that use a proof-of-
work hash procedure such that each shard benefits
from the hashpower from all other shards within the
plethora of shards, whereby a chosen set of shards
having a maximal combined individual hashpower, is
referred to as a consensus.

PoW is only distributed in the sense that all nodes in
Bitcoin or Ethereum style chains can independently
mine and produce a block. PraSaga’s SagaChain
Distributed PoW (D-PoW) [1] is for distributing the
PoW values among multiple independent chains.
Thus, the PoW’s for each chain are included in the
other chains. This does not produce blocks or change
the competitive nature of producing blocks.

The method to combine the hashpower of all the
individual shards has the following prerequisites:

• The rate of block production for each shard is
a known quantity, and may vary from shard to
shard.
• PoW for each shard of a blockchain is
produced periodically and independently.
• The value of the PoW difficulty for each shard
is known and may vary from shard to shard.

The hashpower available on each shard or blockchain is
derived by:
hashpower = Block production rate / PoW difficulty (1)

where a smaller PoW difficulty value implies a larger
expenditure of computing resources to find a PoW
solution, and vice-versa.

where block production rate is defined in common
units across all shards (e.g. seconds).
The combined hashpower of all the shards is the sum
of the individual hashpowers:
combined hashpower = ∑ (Block production rate / PoW
difficulty) (2) summed over the shards.

What D-PoW does, is to enable evaluating a group of
chains over time for validity, where the determination
uses the concept of largest hashpower for any
competing groups of chains. Hashpower equates to
expenditure of resources, which is identical to what
both Bitcoin and Ethereum actually do.

Thus, the immediate consensus is a local matter for
each blockchain, but the long-term probability of
immutability takes all of the available hashpower into
account. This protects directly against a long-term
attack. The reason why this is particularly attractive is
that it allows for signature-based consensus (PoS
variants), but for the long term, eliminates the
dependency on protection of private keys

The evaluation stage which can take place at any time,
and in particular helps with bringing up new nodes,
can deal with adversary attacks that attempt to create
multiple chains that appear to be valid forked off of
the original chains. The grouping of connected, but
disjoint sets of chains, enables the evaluation to
determine which chains have maximum cumulative
hashpower.

This approach also allows for dealing with short term
network partitioning where one or more chains may
be isolated, but rejoin their connection with other
chains, as what will happen is that the maximum
hashpower choice, will find those chains again.

10

When trying to support a sharded or parallel chain
system, the issue of partitioning can either isolate one
or more chains, or break the chains. In the former
case, how to rejoin becomes an issue. One can either
terminate the chains on rejoining the other chains or
try to merge the state. Regardless, a solution of just
assuming that such partitioning won’t happen is not
viable. Further, if a sharded system creates
synchronous cross-chain dependencies, such that if
one chain fails or is partitioned, the entire system
stops.

III. Extensible Blockchain Object Model (SagaOS)5

for parallelization
Most blockchains approach scaling by enabling
parallel execution of multiple transactions on separate
shards, without compromising the immutability and
security of the blockchain, across all the shards.
PraSaga looks at sharding from a different angle.
For the sake of argument, let’s say that a consensus
algorithm for sharding exists. Further, let’s say that
this algorithm runs on an open permission-less
blockchain, and is available today. Even with this, do
we get the scaling that is hoped for with sharding? To
get a feel for this, we take a look at Amdahl’s Law:

This shows that the theoretical speedup of the
execution of the whole task increases with the
improvement of the resources of the system and that
regardless of the magnitude of the improvement, the
theoretical speedup is always limited by the part of the
task that cannot benefit from the improvement.6

This essentially states that the throughput of a
system, once all the parallelizable portions are
maximized, is limited to the throughput of the
serialized portions.

For blockchain sharding, PraSaga interprets this as

5 SagaOS Patent (XBOM) US-20220326981-A1.pdf

meaning that the potential increase in throughput is
currently limited to the quantity of transactions that can be
executed simultaneously on separate shards. That is, if a
transaction on a shard needs data from another shard it has
to synchronize the transfer of the data from the other shard.
This is a point of serialization and given a large pool of
shards, according to Amdahl’s Law this dominates the
throughput.

Individual Native Coin
Transactions
A transaction between two accounts limited explicitly
to only transferring coin balances between the
accounts, such as sending coin between two accounts,
does not need data from any other account.
Therefore, provided the data for both accounts is
available on a particular shard, the transaction can be
executed asynchronously with other transactions on
other accounts. This scales with the number of shards
and the number of disjoint transactions between pairs
of accounts. As the number of accounts grows, one
would expect that the opportunity for sharding such
independent transactions grows as well. In the limit
the throughput is dominated by the time it takes to
execute a single transaction regardless of how many
transactions are being executed at any given point in
time. This is exactly the situation needed for improving
blockchain throughput.

https://prasagaofficial.sharepoint.com/:b:/s/public/EWq79j4bn69Ki0sK3kGYGU8BRce90oDdBGMCRgmC5O63Gw?e=V2EmvU

11

Smart Contracts for Sharding

Things do not work out so well dealing with
smart contracts. A smart contract is
implemented on the blockchain as a single
ledger account with data state associated with
the program code. Each transaction runs
through the code changing the data state.
Each change is recorded on the blockchain and
verified with a hash representing the state.

To maintain a deterministic, consistent state
of the blockchain, each smart contract can only
be executed on one shard at a time, unless the
state of the smart contract account itself can be
sharded. In general, this makes the smart
contract account execution the

12

As smart contracts are used for tokenization, it is
highly likely that as a given token increases in
circulation, its smart contract becomes a bottleneck
for throughput, regardless of how many shards exists,
as predicted by Amdahl’s Law. The following diagram
depicts smart contract serialization: With the current
implementation model for smart contracts there
appears to be only two possible ways for scaling with
sharding:

Use multiple smart contracts segregated on shards Use deterministic multi-threaded smart contracts, (aka
SIMD)

Multiple smart contracts can take advantage of sharding. For example, if each smart contract representing a
token is assigned to a separate shard, then transactions for a given token do not affect transactions on other tokens.
Although each individual token’s transactions are limited to the throughput of the smart contract on its specific shard,
with a large and growing number of tokens, the number of shards can grow linearly with them.

This doesn’t solve the problem of the throughput of an individual smart contract, but it is an improvement over
all the smart contracts on a single blockchain without sharding. Even with this approach, issues occur if
any state is needed from a user account that is shared among the shards (e.g. native coin to pay for the
transactions).

A technique from supercomputing, called vectorization, enables a program to execute sections of its code in
parallel. This is known as single instruction multiple data (“SIMD”). Programs written for SIMD are

13

14

written to be deterministic. In essence SIMD
machines, which today are general purpose graphics
processor units (“GPGPU”), shard their data across an
array of processors. This works very well for certain
classes of applications, such as matrix operations for
graphics and similar.

Theoretically, this approach could be applied to
blockchain smart contracts. That is, a smart contract
could be written explicitly to support parallel
execution of transactions in some manner. It is unclear
exactly how this would be implemented. However,
even with such a solution, writing a smart contract
that is SIMD capable becomes significantly more
complex, as one would expect.

Neither multiple smart contracts nor SIMD smart
contracts are ideal solutions, although both may
provide some opportunity for scalability.

Smart Object Assets Help
Enable Sharding

Limiting points for sharding with smart contracts is
both sharding of state and the code execution. If there
were a means to avoid transactions serializing on a

single smart contract state and code execution,
sharding could increase throughput scaling. To put this
another way, if there was a means for multiple
instruction multiple data (“MIMD”) execution, the
opportunity for blockchain sharding would be
significantly improved.
As was described in “Rethinking The Blockchain
Account Concept”7, if each user account had its own
state, instead of using separate smart contracts, then
each user account could contain objects that represent
assets, whether as tokens or other types of entities. As
described in “extensible Smart Object Assets (XSOA)8,
Smart Object Asset Ownership and Fractional Smart
Object Asset Ownership With the SagaChain
Extensible Blockchain Object Model”9, XSOA’s and
references to XSOA’s could be used to transfer
ownership between accounts with transactions
directly between the account states.
For example, given two sets of transactions, where
each transaction is between different accounts, that is:
one transaction is from account A to account B; and
another transaction is between account C to account
D, then the transactions can be executed on different
shards simultaneously. Further, because the code for
the XSOA’s is independent of any of the accounts and
may be different code for each of the transactions,

sharding for a MIMD model can be accomplished, which
means, different code on each shard and The limiting
point for scale here is the number of transactions that can
take place simultaneously between disjoint account sets.
It would be expected that as the quantity of accounts
grows, the opportunity for disjoint account sets within any
group

15

different data on each shard. The following
diagram depicts smart object asset
parallelization:
of transactions grows as well, which in turn

would result in a growing opportunity for sharding.

Here is a side-by-side comparison of the serial versus
parallel concept:

Using as a given the availability of a sharding
consensus algorithm, an outstanding question is how
to make use of such technology. Smart contracts
inherently serialize transactions and other than a
complex SIMD type solution, only offer scaling by
using multiple separate isolated smart contracts. Even
with that, each smart contract’s throughput is limited

to a single shard’s throughput. By rethinking the user
account to include state information, and using the
SagaOS model, the SagaChain offers a solution to
sharding scalability that scales with the number of
accounts and disjoint transactions among the
accounts. In addition to enabling inheritance and live
code reuse, we believe that this is a significant
solution to the blockchain scaling problem.

16

IV. Extensible Smart Object Assets
Smart Object Asset Ownership and Fractional Smart Object Asset Ownership

Overview

SagaChain introduces a new concept to blockchain
solutions: The Extensible Smart Object Asset
(“XSOA”). Using the SagaChain Extensible
Blockchain Object Model (“SagaOS”)10, virtually
any reference to an asset whether a virtual or
physical asset, may be owned by, and stored in a
SagaChain account. Further it may be transferred
(i.e. sold) to any other SagaChain account. As is
described below this innovation enables a wide
variety of asset ownership concepts including, but
not limited to:

• Asset ownership and transfer
• Fractional asset ownership
• Asset ownership cashflows
• Voting rights
• Use and access rights

Examples of Assets

An asset may be a single physical item such as a boat,
car, house. It may also be an entity such as a business,
or financial instrument.
An Extensible Smart Object Asset instance represents
the asset on the SagaChain in a one-to-one
correspondence.

Asset Creation

An account holder creates a new asset by creating an
object instance of ClassAsset or a subclass. The new
smart object asset is created with the description
information of the asset providing proof of ownership
of the asset. The description information and proof of
ownership of the asset that the asset object

represents are specific to the asset, and as such are
determined by subclasses of the Class Asset.
The newly created asset object instance is stored in
the asset list in the creating account.

Asset Object Reference

Once an asset object has been created, if the creating
account wants to enable transfer of ownership of the
asset, the account holder creates a reference object to
the asset object by creating an instance of
ClassReferenceAsset. A ClassReferenceAsset object
instance contains the object identifier of the asset
object instance. These object instances act as proxies
to the asset objects and are used to show ownership
of the asset object.
Specifically, owning an asset object means by
definition an account that contains an instance of a
ClassReferenceAsset object that contains a reference to
the asset object.
Implementation note: ClassReferenceAsset objects
are passed between accounts for transfer of
ownership. The underlying asset object is perm-
anently stored in the creating account’s state space,
even if the creating account no longer owns the asset.
As a result, the object identifier stored in the
ClassReferenceAsset object is itself immutable.
The following depicts the fundamental asset
ownership concepts:

17

10 The Pat. Pend. 62843392- Extensible Blockchain Object Model (SagaOS) Foundation Classes and Objects and Supporting Data
Structures is an exciting new technology from PraSaga that defines and implements the smart class and smart object model in place
of the smart contract model.

18

19

Each rounded rectangle represents an account on the SagaChain. The Asset Creator Account contains the asset objects
that it instantiated. As is shown an account may create any number of asset objects. Two accounts are shown
that own some of the assets created by the Asset Creator Account. Each owning account contains an Asset
Reference Object instance with the object identifier of the owned asset.

20

Fractionalization of Assets

The term fractional asset ownership refers to the general concept of owning a fraction of an asset. The most
common use of fractional asset ownership is shares in a corporation. Each share represents a fraction of
ownership in the corporation. Other types of assets may be fractionally owned such as a yacht, corporate jet,
vacation timeshare, etc. The SagaChain classes support fractional asset ownership similarly to general asset
ownership. The difference is that a fractionalization reference object is used to create the fractional ownership.
This is depicted below:

A fractional asset reference object can be traded in a
transaction just like an asset reference object and
behaves functionally identically. For example,

cashflows for a fractionalize asset would flow to the
owners based on the fractions they own.

21

Multitiered Fractionalization of
Assets

In this model, a fractional asset reference object is
used as the asset object by a second fractionalization
object. This new fractionalized asset can now be
referenced by a new fractional asset reference object
which can be transferred to new account. All
ownership rights and cashflows would flow through
the references.

Creation of Baskets of Assets

Assets may be grouped together into a “basket” and
fractionalized. A fractionalization object may contain
multiple asset object references from multiple
accounts. This is depicted below with 2 create
accounts.

22

As with the multitiered fractionalization of assets
above, a basket of assets could consist of fractional
assets as well as asset objects. All of the flow-through
would behave identically.

Example Use Case Business

Shares As Assets

Given the above fractional asset model, a business
might do the following:

• create an account on the SagaChain
• create an instance of asset object to represent

the business
• create an instance of a fractionalization object,

initialized with N fractions

The business could then sell the fractions of ownership
to any other account, with the new account containing
a fraction asset reference object. The new account
owner may sell the reference object to other accounts
including back to the original business account.
If/when the business declares a cashflow (i.e.
dividend), the account holder of the fraction asset
reference object sends a transaction to the fraction
asset reference object to collect its cashflow from the
fractionalization object, which in turn collects the
cashflow from the underlying business asset object.

23

Brief Comparison of Extensible
Smart Object Assets to Smart
Contracts

A smart object asset, and the associated asset object
references as described above differ from the smart
contract model significantly and enable new ways of
working with assets on blockchains.

Smart contracts are implemented as a single account,
with associated code (e.g. Solidity code), and a single
data space. If a Smart contract implements a token,
such as an “altcoin” or a “security token”, any account
that owns a token is recorded as an account address
in an array list in the smart contract account. Each new
token is a new smart contract, with separate code and a
separate single account data space.

The smart object asset model stores the asset
reference objects in each individual owner accounts
data space. This in sharp contrast to the smart
contract approach where the account address (which
functions as a reference) is stored in the single smart
contract. As described above, the smart object asset
concept implicitly supports multiple relationships
without adding or changing any code. All that is
required is creation of the relevant objects as standard
transactions. This flexibility enables near limitless
relationship structures between asset owning
accounts without introducing the opportunity for
programming mistakes.

Brief Comment on Sharding and
Scalability with Extensible Smart
Object Assets

The account ownership of the extensible smart object
assets model has a fortuitous side effect with respect
to scalability. The transfer of ownership of a smart
object reference asset between two or more accounts

is a local matter between the accounts. That is, if
multiple smart object reference assets are being
transferred between unrelated disjoint accounts, all of
the transfers may happen simultaneously on separate
blockchain shards. For example, if account A is
transferring to account B, and account C is transferring
to account D, both transfers may happen
simultaneously on separate shards.

In comparison, a smart contract account must process
transactions serially, which implies the state transition
must take place on a main blockchain or a single shard.
Therefore, in the above example only one of the two
transactions can take place at a given time. Sharding
does not provide any scalability in the smart contract
situation.

Summary

The Extensible Smart Object Asset model introduces
the concept of ownership of arbitrary objects to the
blockchain and cryptocurrency model. Since an XSOA
can represent virtually anything and be traded with
any account, many blockchain applications that are
currently implemented as separate smart contracts
and individual tokens may be far more naturally
implemented as XSOAs. Using classes defined with the
SagaOS, transactions for all XSOA’s may be
handled uniformly. This extends naturally to wallets
containing smart object assets as well as buying and
selling of assets. The above diagrams and
descriptions are not meant to be exhaustive. The
XSOA model can be readily extended to support
arbitrarily complex relationships between accounts
and types of assets.

References
“Fractional Ownership”,
https://en.wikipedia.org/wiki/Fractional_ownership
“Fractional Ownership”,
https://www.investopedia.com/terms/f/fractionalow
nership.asp

http://www.investopedia.com/terms/f/fractionalow

24

V. The SagaCoin Financial Model for
Incentivizing

Module 28/31- The Money Market and the Equation of Exchange, Published by Jarmila Štěpánková

There are two opposing goals for the value of the
SagaCoin:
The first is the desire to create a usable currency. For
this, it needs to be stable and related to externalities,
such as national economies reflected in currency
exchange rates. If the SagaCoin is stable, it can see
adoption for use as a means of commerce for a
decentralized global economy.
The second is the desire for the SagaCoin to gain in
value against other currencies so we can exchange
some of it (i.e. USD or EUR) during an initial phase. That
is, the SagaCoin should have a lower inflation rate
than other currencies during an initial phase, and
a negative internal price inflation rate.
To accomplish either of these goals a means of
currency supply management of the SagaCoin is

needed.

25

Existing Cryptocurrency
Supply Management
Existing cryptocurrency supply management
approaches consist of three solutions:

Incentive rewards for performing the block
mining algorithm (i.e. proof-of-work). The
amount of reward per block received
diminishes over time, eventually reducing to
zero. This is the Bitcoin model. Eventually, all of
the Bitcoin tokens[1] that will ever exist will be
mined. The token supply is fixed in the long
term.
Similar to the Bitcoin model, incentive
rewards for performing the block mining
algorithm, except the amount of reward per
block is fixed and never

26

diminishes. In this case, the token supply increases
forever. However, the percentage of increase per
incentive reward as related to the total token
continuously decays.
A token generation event (TGE), which creates a fixed
supply of tokens. These tokens are then distributed to
accounts via some mechanism (i.e. “airdrops).
Although theoretically there can be multiple TGE’s for
a given token, in general such designs, envision a
single TGE, or at most predetermined periodic TGE’s.
In summary 2 out of the 3 solutions are essentially a
fixed supply of tokens, and the 3rd ‘s rate of change of
the token supply drops to negligible amounts over
time, thus effectively making it also a fixed supply. In
short, currency supply management does not exist in
the blockchain and cryptocurrency implementations.

Volume of Token Exchange
The measurement of volume of exchange of a specific
token can be found on crypto exchange listing such as
CoinMarketCap. This measurement shows the
relationship between the token and other currencies,
usually the USD. A higher volume indicates a higher
demand for the token. Since the supply of any specific
token is essentially fixed, as described above, the price
of the token marked to other currencies increases.
That is, the token itself becomes a rare commodity,
resulting in large price fluctuations. Although this
satisfies the second goal above, that of the increasing
value of the token during an initial phase, it doesn’t
satisfy the first and primary goal, a usable currency.

Digital GDP
The measurement of exchange pricing of a token with
other currencies, as described above does not
measure any pricing of that token used directly as a
currency. If we consider a token on a blockchain used
directly for instances of commerce either B2B, B2C or
any other form, the token and the associated
blockchain can be thought of as forming their own
economy. The measurement of this economy can be
thought of in similar terms to any economy as having
a gross domestic product (GDP). To distinguish this
from a national, regional or other geographically
defined economies, we are introducing the term

“Digital GDP”. Thus, the more commerce, the more
things traded directly on the token’s blockchain, the
larger the digital GDP of that blockchain.

Digital GDP and Token Value with
Fixed Token Supply

The demand for a token as determined by the volume
of currency exchange on an exchange listing does not
take into account demand for that token within the
economy of its blockchain. As the digital GDP grows
within that token’s economy, the demand for the
token will increase. This has the effect of reducing the
amount of token available for currency exchange since
the token supply is fixed as described above, and in
increasing use within the token’s blockchain economy.
This simultaneously has the effect of internal price
deflation within the token’s blockchain economy,
while increasing the exchange rate pricing. The most
notorious example of this is the “$800 million dollar
pizza”.[2]

Thus, with a fixed token supply, the internal price
deflates continuously and becomes more valuable
externally making it unattractive to use as a currency
of exchange. Instead, it becomes more of a store of
value. Mining dominates over use as a currency, which
in the short term is very attractive and lucrative for the
miners. But in the longer term, and in the extreme
with dropping usage, a collapse can occur. When a
large majority of the tokens are being held and not
used for commerce on the blockchain, and the volume
of exchange starts to drop off, hyperinflation sets in,
making the coin worthless to exchange.

Digital GDP and Token Supply
Management

To create a stable token with respect both to internal
pricing within its digital GDP and to external exchange
pricing, the supply of the token must be managed.
Thus, using any of the three fixed token supply models
described above cannot result in a stable usable token
for general commerce. Although this may be good for

27

speculators and the initial blockchain developers, it
doesn’t satisfy the first primary goal for the
SagaCoin.
In general, a well-managed economy[3] needs a
money supply management approach that controls
the money supply in a manner that reflects the change
in the size of the economy. As the economy is
measured in GDP (nominal and real), the money
supply, as measured in supply and volume, must
reflect such changes. If this is accomplished then
pricing, such as measured by the CPI, remains stable,
and the primary goal of a stable currency is achieved.
Therefore, a decision to inflate the money supply
would reflect an increasing GDP, and conversely, a
decision to deflate the money supply would reflect a
decreasing GDP. Since it is hard to track true GDP
growth exactly in national economies, the usual
objective is to have moderate price inflation instead.
The theory is that this essentially keeps the money
supply growing in line with a generally growing GDP.
This makes the value of the money stable in the long
run.
Relating this to the SagaCoin in the SagaChain
economy, to realize a stable token usable for general
commerce, the supply management of the SagaCoin
must reflect the digital GDP on the SagaChain
blockchain. If this is accomplished, the phenomenon
of the “$800 million pizza” is eliminated creating
both internal stable pricing, and external exchange
rates. This accomplishes the primary goal above.
As described above, the two goals are in opposition to
each other. Since it is desirable that there is some
continuous growth in store of value for the SagaCoin,
SagaCoin supply management, tracking the internal
economy to eliminate price inflation and deflation
means there would be some minimal increase in the
SagaCoin value with respect to currency exchange
rates. This would eliminate the accumulation of value
in the SagaCoin as an investment opportunity, while
supporting a growing economy
What is required is a high initial growth of the
SagaCoin value, that slows down eventually to
match digital GDP growth of the internal economy,
and eventually targets zero internal price inflation.
The initial growth satisfies the secondary goal
making the SagaCoin an investable entity, while
the target of zero internal price inflation satisfies
the primary goal of a cryptocurrency usable for

general commerce.

28

Given that certain national economies, such as
the US, target continuous price inflation as a
policy, an eventual zero internal price
inflation for the SagaCoin would enable an
exchange rate that increases slowly in value
against other economies, (USD and EUR in
particular). Stated another way, the
SagaCoin supply growth needs to reflect the
growth of the internal economy as time goes
on, instead of a fixed supply (either as a TGE
or overtime). Most people in the crypto world
will not accept this concept currently, given
the influence of the current success of Bitcoin as
valued on crypto exchanges, focusing
exclusively on deflation and store-of-value.

Managing the SagaCoin
Supply for Value
Accumulation and Currency
Usability

So, the question and challenge are how to
come up with a mix that satisfies short term
ROI for the early investors and early adopters,
while making sure in the long run that the
SagaCoin stabilizes and becomes a general,
usable, currency.
The answer to this, is that the money supply
inflation initially must be less than the digital
GDP growth, which will cause SagaCoin
deflation and thus accumulation in value, then
allow for price stabilization, and adjust money
supply against digital GDP resulting in longer
term SagaCoin price stability and usability as
a general currency.
This poses the question of, how to come up with
a mix that satisfies short term value
accumulation and thus an ROI for the early
investors and early adopters, while making sure
in the long run that the SagaCoin stabilizes.
The way to satisfy this dilemma, is to
combine the experience of both the
cryptocurrency models and the national
economy models. The cryptocurrency
models, typified by the Bitcoin model for initial
coin incentive rewards give us the deflationary

model and the value accumulation and ROI desired,
but add a second term in SagaCoin supply
management equation that inflates and/or deflates
for digital GDP which initially has no weighting in the
supply management decision, but becomes heavier
weighted over time, eventually completely
dominating the supply management decision.

29

External GDP

There are two fundamental GDP questions: what is
digital GDP; and how do we measure the GDP of the
rest of the world economies. Note: The assumption is
that fiat currency economies remain dominant and do
not go away (e.g. USD and EUR).
For external GDP, several indices are used, meaning
GDP measurements, excluding the likes the DOW.
Both a real GDP and a nominal GDP measurement of
world economies needs to be taken as these types of
statistics are readily available.
Note that since the accuracy and availability of such
measurements may change over time, the SagaCoin
supply management algorithms support changing
and replacing such sources of statistics, under
governance.

Digital GDP

Measuring GDP in a sector can be reduced to taking
total sales, dividing by average unit price, and
adjusting for inflation against a baseline. However,
how does one measure total sales and units on the
blockchain?
A blockchain such as Bitcoin does not directly have any
concept of sale of units of anything, which makes the
concept of internal digital GDP unmeasurable. Bitcoin
is sort of like having a bank account ledger where you
can see the debits and credits but you can’t see what
any of them were for.
Smart contracts as implemented on blockchains such
as Ethereum, create a separate token for each smart
contract. Although it may be possible to categorize
each smart contract into a market sector and
determine the number of units of an entity that each
token represents, then use exchange listings to come
up with a measurement of internal GDP, this does not
lend itself to a general token supply management
solution. Further, such smart contracts do not have
any common structure between them which makes
any such evaluation extremely difficult.
If there were a means for internal digital GDP
measurement, then there would be a means to look at
the P*Y side of the monetary equation for SagaCoin
supply management. If not, one can only go with an
arbitrary money supply inflation model, just like

any other

30

cryptocurrency. That would mean the
primary goal above is likely never to be
fulfilled.
PraSaga proposes a solution that the initial
incentive model is a decaying model, similar
to Bitcoin, but coupled with a digital GDP
inflation/deflation tracking model that
dominates in the long run. This function is
written into the SagaChain using the
SagaChain smart object model. The target
objective is that the deflationary incentive
model dies off after a period of 10 years
instead of the longer Bitcoin model. It is
believed that the digital GDP concept is a
critical missing component of crypto
currency in general.

Smart Objects Supporting Digital GDP
Measurement

Smart object classes that enable measuring
digital GDP can easily be designed. They would
include fields that specify units, price, and
market segment at a minimum. As all
transactions are recorded on the SagaChain and
are priced in SagaCoin, a digital GDP
measurement may be derived directly.

Some Assumptions for Digital
GDP Enabled Smart Objects:

Allow for a mix of smart objects classes that
provide measurements and those that are
arbitrary transfers of SagaCoin.
Define “one-shot” exchanges which are often
wallet- to-wallet, versus multi-payment which
are usually instances of commerce of some
kind.
Use the smart object class concept to create
“buckets” of types of commerce similar to
sectors in economies. Smart objects that do
not follow any models are considered in their
own sector type. These can be distinguished
as one shot and multipayment only. They are
prorated for the digital GDP based on their
volume in units where a unit equals the one-

shot, or a transaction for the multipayment time's
average price, against total SagaChain volume. Their
contribution to digital GDP is then weighted by this.
These are essentially then “virtual units” and are
figured in to the total digital GDP.
By coupling these approaches with the first type of
smart object classes, specifically for the IoT data

31

markets, as an example, and by using the SagaOS smart
object model, any Dapp designer can “inherit” the
means for recording the metrics for digital GDP by
using the smart object classes in the foundation
classes of the SagaChain.
Given the significant improvement in ease of use with
the SagaOS smart objects, and the expected Dapps that
depend on them, it is expected that they will become
part of standard usage and thus digital GDP
measurement will become increasingly more accurate
as of the usage of the SagaChain increases.

Decentralized SagaCoin Supply
Management with Digital GDP
Metrics

The Digital GDP metrics derived from the
SagaChain are calculated locally by each node
given the current consensus state of the
blockchain. The metrics are input to the SagaCoin
supply management function and result in changes
in the rate of increase or decrease of the SagaCoin using
the incentive reward and token burning mechanisms
implemented in the SagaChain monetary policy.
Creating Digital GDP Metrics for Non-Conforming
Smart Object Classes
As described above, there are three sectors: one-shot;
multi-payment; and wallet-to-wallet. To determine
their digital GDP, the number of transactions of each
type are summed and divided by the total
transactions, to obtain their weighting. This then gives
the average unit price as a total for each, divided by
the transaction count. Then the comparison of the
change in transaction count against a baseline
developed historically is applied. A positive change
times average unit price as a weighted is considered
an increase in GDP, produces a usage metric.
Wallet-to-wallet transfers imply token utility, but the
utility is unknown. If all basic ledger transfers of
SagaCoin are considered a form of general
commerce, then wallet-to-wallet falls under general
commerce. If the global average of “unit price of
goods”, is taken as a measurement for general
commerce measurements, then the unit price of
goods would be taken across all sectors defined by all
smart object classes, which gives another metric.

The implication is that something of value must have
changed hands for the instances of general commerce
as well. This works reasonably well if the conforming
smart object classes dominate the transactions
overall. Or, more specifically if, the smart object
classes track the average unit price of goods
reasonably well. The assumption is made that this will
be the case based both on ease-of-use of the smart
object classes, and a Schelling point hypothesis.
Digital GDP Metrics and Conforming Smart Object
Classes
The SagaOS foundation classes implemented on
the SagaChain shall include the categories of
commerce as currently defined by the US, Europe
or by other governments globally. Using these as a
basis creates a means to establish a common set of
metrics that can be understood both with the internal
SagaChain economy and external economies. As
the SagaCoin token supply management initially is
using a deflationary decaying incentives reward
model, that essentially ignores all GDP metrics
during the initial phase, the initial phase will be used
to establish baselines for tracking.
The foundation will create classes and objects that
include all current categories of commerce defined by
the US, Europe (e.g G20) with amending capabilities
for expansion. That way there is some means to try to
establish a common set of metrics. It is essential that
initially, a decaying incentives model is used. This will
allow tracking to commence before it is actually used
in controlling the economy. This allows for the
establishment of long-term money supply goals used
as the token management supply transitions from
SagaCoin value accumulation to price stability.

External Economies and “Oracles”

Although the Digital GDP metrics can be determined
locally and independently by all SagaChain nodes, and
thus are decentralized by design, the metrics of
national economies are centralized and reported by
often a single source. By definition, such sources are
reported as oracles with respect to the SagaChain. The
smart objects that implement the token supply
management on the SagaChain shall initially define the
oracle sources for all such external reporting. These
smart objects include methods to replace the
oracle sources if and when

32

such a need arises. A voting body shall be established
consisting of stakeholders in the SagaChain,
defined as owning sufficient SagaCoin, and/or
certification of authentic identification for the
purposes of controlling changes to all parameters
to the SagaCoin supply

management implementation, as the form of
governance. The SagaOS Smart Objects can
enable complete security against any unauthorized
changes through the use of threshold multiple
signature designs.

VI. Governance SagaOS Objects of Operational Smart
Assets

Overview

Smart DPOUSBDUT, as implemented currently in
the blockchain community follow the model that
“code is law”. Although this sounds attractive, in
practice, any single mistake in a smart DPOUSBDU can
be catastrophic. Further, the SagaChain uses
smart DPOUSBDUT internally to manage critical
aspects of its operation.

Therefore, the SagaChain has added a new
concept Smart Asset, governance. A governed
smart asset includes various abilities defined
below. The governance aspect is implemented as
a committee membership of voters. Governance
enables control and modification of smart assets.
Governed smart assets are an optional capability
that complement the “code-is-law” model.

Governance Capabilities in Abstract

The following abstract capabilities needed for
governance:

• Means for describing who can vote,

adding/deleting
• Means for bringing something up for vote
• Means for voting
• Means for implementing the result of the vote
• Means for verifying the implementation.

Abstract operational capabilities of voting governance:

• Control a smart asset

(start/stop/pause/delete)
• Modify parameters to a smart asset
• Smart asset algorithmic sections replacement

33

Governance Diagrams

The following sections describe how governance of governed smart assets is implemented abstractly. The
following diagrams depict the relationships between the abstract components of the governance architecture

Governed Operational Smart Asset Architecture

Registry of
Committee

Members Asset

Governance
Voting
Asset

Majority/Super
Majority

Community
Voted Change Operational

Smart Asset

API Transactions

Voted Management
API Function Calls:

Start/Stop/Pause/Reset
Parameter Change
Algorithm Change

Delete Asset
Custom

Operational API
Implementation

Start/Stop/Pause/Reset
Parameter Change
Algorithm Change

Delete Asset
Custom Implementation

Governance Voting

Any voter that is registered for the given governance
committee and is authorized based on any staking or
other requirements can submit a change request to
the governed operational smart asset. A change
request is a piece of executable code. The code, with
a text is submitted to the governance committee.
Upon a successful vote of committee AND majority
and/or super majority community vote as required
by governance mandate, the code is executed
against the operational smart asset. If the vote is
unsuccessful the change request code is abandoned.
The conceptual steps for a change request are the
following:

• A committee member proposes a change

request
◦ consisting of executable code
◦ and text description
◦ sent as a transaction to the governance

asset
• Governance asset verifies the committee

member
◦ a committee member must be registered
◦ a committee member may only have one

outstanding change request
• If there is an ongoing vote, the change request

is queued in a FIFO
•

The next change request is sent to all committee
members, using the means designated by each
member's registration:

◦ email
◦ text
◦ etc.
◦ via outbound smart asset calls

▪ Or via a blockchain scanning model
• The voting duration timer is sent to the timer

service
• If the vote is successful (majority,

supermajority or unanimous) then
◦ The change request is sent to community

vote
◦ If plenary vote is successful (majority,

supermajority or unanimous) then
◦ the change request code is executed using

the APIs on the operational smart asset
• else if the vote is unsuccessful then

◦ the change request is abandoned
• else if the time expires before sufficient votes

are collected then
◦ the change request is abandoned, and late

votes are ignored
• The FIFO queue is checked for the next vote. If

present, then start the next vote.
• Otherwise exit.

Community
Voting

Contract
Timer

Registry of
Committee
Members

Voting
Contract

Voter
Proposal

Voted

API 28

29

Governance Voting
Management

There is no central control or leader of the governance
asset. Any committee member may propose a vote at
any time. Instances of the governance asset may
impose various limits such as the number of votes a
member may propose per unit time, how long a vote
may last, and similar.

Governance Asset Management

A governance asset is considered immutable once
instantiated. No modification to the governance asset
code is allowed. A governance asset may optionally
allow itself to be voted out of existence by its
governance committee and community. In such cases,
the operational smart asset associated with the
governance asset shall be terminated as well.

Note: Built-in assets to the SagaChain are
immutable and non-cancellable.

Change Request Code
Change request code consists of two main categories:
changes to parameters; and changes to algorithms.

Parameter changes are enabled through simple
parameter setter functions. Change request code to
change a parameter is of the form (pseudo-code):

• parameter = <value> |

<value> (operation) <old
parameter value>

Parameter changes may be grouped together, voted
on, and executed as a single transaction.

Algorithmic changes enable changing functional
models of an operational smart asset. An asset that
supports such modifications must have one or more
functions that are called using indirection. Change
request code to change a function is of the form
(pseudo-code):

• <Function> = <New Function (parameters)>
• <New Function> {implementation}

The new function parameter signature must match
the old function signature exactly.
Multiple function changes may be grouped together,
voted on, and executed as a single transaction.
Parameter changes and Function changes may be
grouped together, voted on, and executed as a single
transaction.
The governance asset verifies that each change
request is syntactically and semantically correct with
respect to parameter names, defined value ranges,
and function signatures, prior to proposing a vote on
each such change request.

Registry Committee Members
Asset

Each governance asset may use its own policies to
specify the allowed committee membership. The
Registry Committee Members Asset instance is used
to record identification information for each voting
member. The identification information may consist of
self-identification, certificate authority identification,
or customized identification information. A
governance asset's API provides a means for
committee members to provide their identification
information, for the registry.

All committee member transactions submitted to
governance APIs are authenticated against the
identification information stored in the committee
registry. Any failures to authenticate are rejected.

Operational Smart Asset API Lock

At asset creation time, the governance asset shall
provide a single, immutable, authentication key to its
associated operational asset. All governance APIs of
the operational asset shall require the authentication
key and shall reject all unauthorized transactions.

Summary

The smart asset governance architecture consisting of
the four main types: registry; governance; operation;
and timer service, along with the change request vote
and change request API, enables a decentralized,

30

distributed committee control of smart assets
generally. We believe this addresses one of the

significant weaknesses in the smart contract concept
as implemented in the current blockchain community.

VII. Governance & Financial Models

Governance

The governance refers to any actions carried out on
the network that change the rules of the decentralized
system. The governance model from PraSaga takes
inspiration from modern democratic and monetary
policy systems. Recommendation Boards will be
comprised of Subject Matter Experts from a range of
communities including developers, cryptographers,
economists, legal experts and other domain experts
who specialize and contribute to the network
development.

To democratize the process, key policy and ultimately
implementation decisions will be based on a majority
or super majority plenary vote from the SagaChain
community. To balance the voting, the weight of
each individual will not be determined by how many
validator nodes or tokens held, to lessen the self-
interested impact on the governance decision- making
process, we envision a one person one vote system
which is further enabled by the SagaOS account and
smart capabilities.

There are four proposed vertical areas of governance:

Technology
Monetary
Treasury
Community.

Each Recommendation Board will comprise of a panel
of experts, at first appointed by the foundation and
tasked with day-to-day responsibilities to engage with
PraSaga ecosystem and outside experts. The boards
will propose recommendations to the SagaChain
Community for final vote before changes or new
features for the ecosystem are implemented.

An outline of responsibilities for each Board is noted
below, we fully expect there will be sub-committees
that report up to the main boards:

Technology Board: work related to building and
releasing updates of the SagaChain, and other
technical issues;
Monetary Board: work related to monetary policy
around token supply and treasury, and other
economic and commercial governance issues;
Treasury Board: work related to managing the
budgets for the PraSaga Foundation, the
PraSaga Philanthropic spending
Community Board: work relating to marketing and
promoting the SagaChain globally, and the
appointment and management of ambassadors for
outreach and education.

PraSaga Foundation, as the originator of the network,
will help initiate and coordinate the Boards and sub-
Committees in order to get them established and self-
sufficient. It is intended that the Boards will as soon
as practically possible be independent from PraSaga
and comprised of a majority of non-PraSaga members.
Any member of the community can apply to join an
expert Board and/or Sub-Committee, there will need
to be a vetting process to ensure best representation
for the community in their ecosystem of experts and
final plenary vote. Each board shall include seven
members with a term of 5-7 yrs.

There are four core financial models in the SagaChain.
These are the following:

• Monetary Policy Model
• Treasury Model
• Gas Price Model
• Node Staking Model

Financial Models

The Monetary Policy Model manages the supply of the
SagaCoin, changing the rate of increase or
decrease based on economic information.

The Treasury Model manages the budgets for the
PraSaga Foundation, the PraSaga Philanthropic
spending, the wealth redistribution function, and a
short-term surplus.

The Gas Price Model manages the average gas price
with respect to the total SagaChain economy, to
maintain profitability for node operators and enable
competitive pricing for differentiated service.

The Node Staking Model manages the node
SagaCoin staking requirement for (re)registering a
node for the SagaChain. The objective for node
staking is to discourage various forms of attacks by
attaching monetary costs to such attacks, while
balancing the staking amount

with encouraging a large diverse pool of node
operators.

Combined, these four models manage the main
aspects of the internal financial aspects of the
SagaChain.

Monetary Policy and Treasury
Models

The Monetary Policy Model and Treasury Models are
independent of each other and are controlled by
independent governance bodies. However, they have
both direct and indirect relationships. Therefore,
these are discussed together. The diagram below
shows the direct conceptual relationship between
these two models.

Both models are discussed below:

Monetary Policy Management and Treasury Management Relationship

Global

Metrics
Fees

Wealth

Monetary

31

32

Monetary Policy Model

The responsibility of the Monetary Policy Model is to
manage the supply of SagaCoin in the total
SagaChain economy. This is equivalent in concept
to decentralized money supply management. To
accomplish this there must be a means to increase the
supply of SagaCoin as well as decrease the supply of
SagaCoin.

Increasing the SagaCoin supply is accomplished
through block incentives. As such, the Monetary
Policy Model affects the increase of the SagaCoin
supply by managing the amount of SagaCoin per-
block incentive.

Decreasing the SagaCoin supply by definition
means burning SagaCoin. Psychologically burning
coin is difficult, even though theoretically it increases
the value of the remaining in circulation. That is, a node
operator on validating a block expects to earn
transaction fees and possibly an incentive reward.
Burning some of the transaction fee and eliminating
the incentive reward, if needed to manage the
SagaCoin supply is unlikely to be a welcome state.

Therefore, the Monetary Policy Model uses a novel
approach. An optional, variable SagaCoin bonus is
given to each node as it (re)registers on the
SagaChain. This bonus, just like the stake, earnings
and incentive rewards are not received until the node
completes a lifecycle. The amount of the bonus may
vary and may be zero, based on the Monetary Policy
Model's determination of the target SagaCoin
supply.
Any bonus that is not delivered to the node is burned.

Burning the SagaCoin instead of delivering it as a
bonus is not sufficient on its own. The critical missing
piece is the source of the SagaCoin for the bonus. The
bonus SagaCoin is supplied from the Treasury
account, which in turn is collected from the
transaction fees taxes. As a result, burning some or
all of the bonus directly reduces the SagaCoin supply.
Because the bonus only impacts the node registration
stage, when SagaCoin supply reduction, or
reduction in the rate of increase is needed, the

Monetary Policy Model reduces bonus returned to the node
through the Monetary Policy smart contract, the nodes
already registered on the SagaChain do not feel the impact
directly.

33

Equation of Exchange

The fundamental equation is M*V = P * Y,

where M = money supply
V = velocity of money
P = price of
goods Y =
real GDP

The money supply, M, for the SagaChain is
the SagaCoin coin supply. Unlike a fiat
currency, all of the SagaCoin in all the accounts
can be accounted for. However, the use of the
account cannot be determined (e.g. savings
versus checking in a traditional bank
account). Thus, determining the effective
money supply is difficult.

GDP, Y, for the SagaChain is termed “digital
GDP”. There are several means to measure the
digital GDP. One of the best means is the
Commerce classes. It shall be defined to
include a unit volume per transaction and a price
per unit. Subclasses of the Commerce class shall
include market segment information. For
non- commerce class ledger transactions,
an average transaction size for a period can be
measured and the rate of change of size of the
transactions and change of volume across
periods can be used to estimate change in
digital GDP.

Price, P, is defined as the average price of the
average unit. For the SagaChain, P*Y can be
calculated directly.

Velocity, V, measures the velocity of money,
SagaCoin. Velocity is measured simply as the
number of SagaCoin that were spent per
period.

The objective of the Monetary Policy Model
is to manage the SagaCoin supply in the short
term with respect to the velocity, and in the
long term with respect to nominal digital

GDP.

For short term management, the nominal digital GDP
is considered constant. Thus, an increase in velocity
can result in an increase in demand for SagaCoin.
Therefore, the SagaCoin supply is incrementally
increased by increasing the rate of incentives or
depending on the current state a decreasing in the
burning rate.

34

For long term management, the velocity is considered
constant, and the nominal digital GDP growth is
considered. The SagaCoin supply is increased
(decreased) based on the projected digital GDP growth.
To manage the SagaChain digital GDP versus external
economy's GDP, the ratio of rate of projected growth
is used to target a price growth rate moderately
below the external economy.

The short-term adjustment period occurs every NN
days defined in blocks.

The long-term adjustment period occurs quarterly
lagging the external economy published values.

Treasury Model

The Treasury Model uses the following equation:

XX% * Transaction fees = Foundation Budget + Wealth
Redistribution Budget + Philanthropic Budget +
Surplus Budget.

XX% is the percent of the transaction fee for each
block that is contributed to the Treasury (i.e. tax).

Transaction fees are the sum of all transaction fees for
a given period.

Foundation Budget is the contribution to maintaining
the Foundation operations.

Wealth Redistribution Budget is the SagaCoin
available for node (re)registration bonus or burning.

Philanthropic Budget is available for projects
determined by the Philanthropic Governance.

Surplus Budget is intended to provide a buffer for
short term fluctuations to avoid shortfalls in the other
budgets.

The Treasury Model including the budgets and the
XX% are determined by Treasury Governance.

Gas Price Model

The Gas Price Model uses the following equation:

Average Transaction Gas Price = (P*Y * GG%) /
transaction count.

The SagaChain average transaction throughput gas
price is set periodically using the above formula.
Essentially the intent is that the SagaCoin spent on
gas is on average GG% of the economy.
GG% is managed by Gas Price Governance.

Node Staking Model

The Node Staking Model uses the following equation:

Node Registration Stake = (P*Y * SS%)/node count

The node registration stake price is set periodically
using the above formula.
The intent of the node registration stake is to
discourage a majority attack by setting the per-node
stake such that a 50+% attack (P*Y * SS%/2) is a large
enough financial commitment to deter such an attack.

SS% is managed by Node Staking Governance.

PraSaga Foundation

Note that changes to the parameters of the
SagaCoin supply management functions do not
impact the functionality, but it does allow the
governance body to perhaps manipulate the money
supply by manipulating the source oracles for external
economy metrics. Thus, the value of the SagaCoin
could become hostage to such a governance body.
If confidence is lost in the governance body, then a
malicious governance body might change the GDP
measurements, causing either hyperinflation or
stagnation. It is not viable to mandate that the PraSaga
Foundation always controls this. That would
substitute centralization in the Foundation creating
the concern that the Foundation would engage in
similar manipulations.

35

Therefore, the PraSaga Foundation shall perform at
least the following functions:

1: Running a root chain permanently. This is a
continuity requirement to protect against
catastrophic global network failures.
2: Running full backup nodes — these may be
used for downloading by new joining nodes
optionally

3: supporting the SagaChain and SagaOS
source code and the Foundation Institute

For consideration, the Foundation could include a
charter to also provide structure for a SagaCoin
supply management governance body.

36

VIII. Conclusion:
PraSaga has designed the next evolution of blockchain architecture. A blockchain that actually achieves the
promise that all blockchains have aspired to. One that provides the highest level of resistance against attacks.
One that rewards its ecosystem of contributors. And, one that, perhaps most importantly, scales in throughput
as more resources are added to the network, providing the maximum possible increase in speed.

The SagaChain catalyzed by our eXtensible Blockchain Object Model (SagaOS) builds a ledger that puts the
coding, execution and settlement of all asset transactions directly onto the blockchain — delivering an
evolved approach to Smart Contracts that provides increased speed of development, higher quality, and a
future proofed development infrastructure.

The D-POW, SagaOS and SagaCoin combined, enable a global, scalable, currency stabilized, independent,
decentralized blockchain.
Current status:

• The D-POW and related algorithms, the SagaOS, and the SagaCoin financial are the subject of a

series of pending patents.

• A proof-of-concept implementation of the SagaOS realized on top of the Hyperledger Fabric blockchain
platform for non-cryptocurrency enterprise applications is available in an MVP form. A set of
foundational classes are provided in source code format.

• The Product suite of PraSaga creates an underlying global foundation for all transactions financial and
other while protecting individual sovereignty and ownership/access of all assets.

• The source code and development environment is available at xbom.io for experimentation and testing

SagaChainTM, SagaCoinTM, Extensible Blockchain Object ModelTM, SagaOSTM, Extensible Smart Object
AssetTM, XSOATM, Smart ObjectTM, Extensible Signature ObjectTM, XSIGTM are trademarks of PraSaga,
LLC. All rights reserved. www.prasaga.com

http://www.prasaga.com/

	Index
	Abstract
	I. SagaChain Sharded Consensus Main Loop
	Current State Blockchain Architectures
	SagaChain Sharded Consensus Main Loop
	Leader Operations
	Block creation Stage 1

	Leader Gossip Stage 4
	∑ node signatures >= f + 1 and f >= node count / 2

	Validator Operations
	PoW Operations, stage 3
	Validator Gossip, stage 4

	II. Distributed Proof-of-Work
	(D-PoW) for scalability

	III. Extensible Blockchain Object Model (SagaOS)4F for parallelization
	Individual Native Coin Transactions
	Smart Contracts for Sharding
	Smart Object Assets Help Enable Sharding

	IV. Extensible Smart Object Assets
	Overview
	Examples of Assets
	Asset Creation
	Asset Object Reference
	Fractionalization of Assets
	Multitiered Fractionalization of Assets
	Creation of Baskets of Assets
	Example Use Case Business Shares As Assets
	Brief Comparison of Extensible Smart Object Assets to Smart Contracts
	Brief Comment on Sharding and Scalability with Extensible Smart Object Assets
	Summary

	V. The SagaCoin Financial Model for Incentivizing
	Existing Cryptocurrency Supply Management
	Volume of Token Exchange
	Digital GDP
	Digital GDP and Token Value with Fixed Token Supply
	Digital GDP and Token Supply Management
	Managing the SagaCoin Supply for Value Accumulation and Currency Usability
	External GDP
	Digital GDP
	Smart Objects Supporting Digital GDP Measurement

	Some Assumptions for Digital GDP Enabled Smart Objects:
	Decentralized SagaCoin Supply Management with Digital GDP Metrics
	External Economies and “Oracles”

	VI. Governance SagaOS Objects of Operational Smart Assets
	Overview
	Governance Capabilities in Abstract
	Governance Diagrams
	Governance Voting
	Governance Voting Management
	Governance Asset Management
	Registry Committee Members Asset
	Operational Smart Asset API Lock
	Summary

	VII. Governance & Financial Models
	Governance
	Financial Models
	Monetary Policy and Treasury Models
	Monetary Policy Management and Treasury Management Relationship
	Monetary Policy Model
	Equation of Exchange
	Gas Price Model
	Node Staking Model
	PraSaga Foundation

	VIII. Conclusion:

